Ontology based Query Processing in Database
Management Systems

Chokri Ben Necib and Johann-Christoph Freytag

Department of Computer Science
Humboldt-Universitat zu Berlin, Germany

{necib, freytag}@dbis.informatik.hu-berlin.de

Abstract

The use of semantic knowledge in its various forms has become an important aspect
in managing data in database and information systems. In the form of integrity con-
straints, it has been used intensively in query optimization for some time. Similarly, data
integration techniques have utilized semantic knowledge to handle heterogeneity for query
processing on distributed information sources in a graceful manner. Recently, ontologies
have become a "buzz word” for the semantic web and semantic data processing. In fact,
they play a central role in facilitating the exchange of data between the several sources.
In this paper, we present a mew approach using ontology knowledge for query processing
within a single relational database to extend the result of a query in a semantically mean-
ingful way. We describe how an ontology can be effectively exploited to rewrite a user
query into another query such that the new query provides additional meaningful results
that satisfy the intention of the user. We outline a set of query transformation rules and
describe by using a semantic Model the necessary criteria to prove their validity.

Keywords: Databases, Ontologies, Semantic Knowledge, Query Processing

1 Introduction

Semantic knowledge in its various forms including meta-models and integrity constraints is becoming
an important aspect in managing data in database management and information systems: Semantic
query optimization techniques have emerged in the 90s to complement the traditional approaches to
reducing processing costs and to overcoming the heterogeneity problem in a distributed processing
environment [7,12, 3, 1]. Here, semantic rules about the data such as integrity constraints are the basis
for reformulating user queries into more efficient, but semantically equivalent queries, which return
the same answer in less time or with less resources. There are also several mechanisms in knowledge
databases that use semantic knowledge from a set of intentional knowledge including deduction rules,
generalized rules and concept hierarchies in order to provide an ”intelligent answer” for queries.
"Intelligently answering” a query refers to providing the user with intentional answers in addition
to the data (facts) as answers. These answers include some generalized, neighborhood or associated
information that characterizes the data results [10]. Moreover, the intentional knowledge is stored in
the database; thus the user can retrieve this additional knowledge as well.

In recent years, semantic knowledge in the form of ontologies has proven to be a powerful support
for the techniques used for managing data. Ontologies promise solutions to the problems of semantic
interoperability and data heterogeneity in querying distributed databases. An ontology might be used

www.manaraa.com

to capture the semantic content of each source and unify the semantic relationships between their data
structures such as the attribute properties and relation names. Thus, users should not care about
where and how the data are organized in the sources. For this reason, systems like OBSERVER [16]
and TAMBIS [20] allow users to formulate their queries over an ontology without directly accessing
the data sources. Since the ontology defines the set of terms to be used in a query, the users must be
familiar with the content of the ontology. However, using a large ontology to navigate and to select
appropriate terms causes many difficulties. In our approach, the user does not have to deal with
the ontology directly; he can formulate his queries over the database as usual. In this case, it is the
responsibility of the query processor to reformulate the query using the ontology associated with that
database.

On the other hand, ontologies might enhance the functionality of the search engines on the web by
adding semantics to the information content of web pages. Ontologies are used to define the meaning of
the terms emerging on the web pages and these can be used to make inferences to get more information
related to the objects of interest [2].

In this paper, we present a new approach using ontologies for query processing within a single relational
database management system. We assume that a preexisting ontology is associated with a database
and provides the context of its objects. We show how an ontology can be exploited effectively to
reformulate a user query such that the resulting query provides additional meaningful results meeting
the intention of the user. A query can be defined by a set of projections over the objects satisfying
a set of conditions. These conditions are defined by a set of terms and determine the answer. If a
user wants to retrieve information from a database about a certain object, he might use terms, which
do not exactly match the database values (due to the mismatch between the user’s and the database
designer’s world views). However, there might be values in the database that are syntactically different
from one another but semantically equivalent to the user terms and that express the same intention of
the user. Wee address this issue as a semantic problem rather than as a pattern matching problem. We
define two terms as semantically equivalent if they have the same meaning, i.e. they define the same
concept with respect to the ontology. For example, if two terms are synonyms, they are semantically
equivalent. As a result, if we consider semantics in query processing, the number of results for the
transformed query might increase or decrease. In both cases the user receives an answer that is
further satisfying his expectations. For example, if two terms are synonyms, they are semantically
equivalent. As a result, if we consider semantics in query processing, the number of results for the
transformed query might increase or decrease. In both cases the user receives an answer that is further
satisfying his expectations. For example, let us assume that a user intends to query a database of
products to get some information about the product ”computer”. Thus, the user will not obtain all the
related instances from the database unless he know in advance that the database contains additional
values that are semantically synonyms for ”computer” such as ”calculator” or ”data processor”. By
considering these terms in the query the user will get more results from the database.

We use an ontology as a semantic layer over a database to describe the semantic relationships between
the database values in order to transform user queries to other meaningful queries. To this end, a set of
transformation rules must be developed taking into account possible mappings between the database
and the ontology content. We assume the preexistence of an ontology associated with the database;
but we point out its main features to fit the semantics of the database and assert the validity of such
rules. Therefore, we develop a semantic model and basic criteria like correctness and completeness.

Our approach can be appropriate for the databases where some attributes are enumerated from a list
of terms. For example, in product databases, the product items are described according to a collection
of standard terms [19]. These terms are organized in taxonomies.

The remainder of this paper is organized as follows. In section 2 we discuss some preliminaries. In
section 3, we present the problem by means of an example. In section 4, we illustrate our approach.
In section 5, we describe a semantic model to validate this approach ,and in section 6 we reach our
conclusion.

www.manaraa.com

2 Preliminaries

2.1 Ontology

Nowadays, the term ”Ontology” or ”ontologies” 1is intensively used in artificial intelligence and
information systems areas. However, there is no clear definition of what an ontology is. Often, we find
in the literature definitions that are general or tailored according to the domain where the application
is developed. The term ”Ontology” is sometime used as a synonym for other terms such as ”Controlled
Vocabulary”, or ”Taxonomy”, or "Knowledge Base”. This is due to the overlapping of some common
features of these concepts. Since it is not the goal of this paper to discuss the definition of an ontology,
we first give our own definition of this notion and then a short comparison with other similar notions.
Readers, who are interested in the different meanings of ”Ontology” are referred to [8, 9, 17, 4].

Informally, we define an ontology as an intentional description of what’s known about the essence of the
entities in a particular domain of interest using abstractions, also called concepts and their relationships
. Basically, the hierarchical organization associated to the concepts through the inheritance ("ISA")
relationship constitutes the backbone of an ontology. Other kinds of relationship like the aggregation
("Part0f") or Synonym ("SynOf") or application specific relationships might exist.

The term ” Controlled Vocabularies” (CVs) is commonly used in the field of linguistics, to mean a set
of standardized terms with commonly agreed semantics for a specific domain within user communi-
cate [14]. A special kind of a controlled vocabulary is a thesaurus . A common feature of an ontology
and a thesaurus is that they contain a large set of special terms concerning a certain domain and
provide a clear understanding of their meanings. Furthermore, both an ontology and a thesaurus use
relationships among the terms to represent these meanings. However, most of the relationships used in
a thesaurus are different from those used in an ontology. In addition, they are usually ambiguous and
less specified. For example, the relationships Broader Term (BT) and Narrower Term (NT) indicating
that a term has broader meaning than another term and vise versa, indicate sometimes the special-
ization and the part-whole aspects at the same time [21]. Moreover, such inverse relationships are not
explicitly represented in an ontology. Finally, a thesaurus deals with terms whereas an ontology deals
with concepts but uses terms to represent these concepts. In general, a concept is not a word and
it is not specific to a given natural language [13]. Thesaurus are dependent upon a specific natural
language (or multiple language in case of Multilanguage thesaurus).

The term ”Taxonomy” refers the classification of entities, whether they are terms or objects, in a
hierarchical structure according to the sub/super class paradigm. Thus, there is only one type of
relationship relating these entities, namely the ISA-relationship. For this reason, if we reduce the
types of relationships in an ontology to only the ISA-types to represent concepts, the ontology will be
equivalent to a taxonomy.

Moreover, the use of the term ”Ontology” can be confused with the use of the term ”Knowledge
Base”. A knowledge base for the Al-community consists of two parts: A terminology Box, called
”T-Boz” and an assertions Box, called "A-Boz” . The T-Box comprises a set of concepts and their
definitions. It includes usually a taxonomy of terms related to each other with ISA-relationships.
The A-Box comprises a set of instances of these concepts, called the universe of discourse, and a set
of assertions between them. The common feature of Ontologies and knowledge bases is that both
represent knowledge. However, knowledge bases provide in addition instances, for which knowledge
is applied and inferred. Thus, if we reduce a knowledge base to the T-Box, we can say that the an
ontology is equivalent to the resulting knowledge base.

"What does an ontology look like?” and "How can it be created?” still remain struggling topics for
researchers but what they all agree upon is that an ontology must play the following role: An ontology
must provide knowledge in the form of concise and unambiguous concepts and their meanings. This
knowledge can be shared and reused from different agents i.e. human or/and machines.

www.manaraa.com

2.2 Graphical Representation of an Ontology

In this section, we introduce a graph based representation of an ontology and set the associated graph
operations. We agree that The graphical representation is more appropriate than the text based one
found in the literature [13]. This representation conveys the properties of an ontology in a simple,
clear and structured model.

Formal representation. Formally, we define an ontology as a set (= {c;,...,¢n} and a set R =
{”1SA”,”Syn0f”, "Part0f”} where ¢; € (is a concept name, and r; € R is the type of the binary
relation relating two concepts (¢; and r; are non-null strings). Other domain specific types can also
exist. In the literature, the word ”concept” is frequently used as a synonym for the word ”concept
name”. Hence, for the design of an ontology only one term is chosen as a name for a particular concept
[24]. Further, we consider that the terms ”concept” and ”concept name” have the same meaning.
We represent an ontology as a directed graph G(V, E) (DAG) where V is a finite set of vertices and
E is a finite set of edges: Each vertex of V is labeled with a concept and each edge of E represents
the relation between two concepts. Formally, the label of a node n € V is defined by a function
N(n) = ¢; € ¢ that maps n to a string from {. The label of an edge e € E is given by a function T'(e)
that maps e to a string from .

Finally, an ontology is given by the set O = {G(V, E),(,R, N, T}.

Figure 1 gives an example of a graph representation of a selected portion from the ontology ” Product”.
A part of this ontology is adopted from an ontology described in [11].

Graph operations. In order to navigate the ontology graph, we define the following primitive oper-
ations: ISAChild, PartOfChild, ISAParent, and PartOfParent and two sets of concepts: DESC and
SY Ns. We need these operations and sets to identify nodes in the graph, which hold concepts that
are of interest for a query manipulation.

Given two nodes ny= node(c;) and na= node(cs)

e ny = ISAChild(n,) iff ny = child(ny) and T[(n1,n2)] = "ISA"

e ny= PartOfChild(n,) iff no= child(n;) and T[(ni,n2)] = "Part0f"

e ny = ISAParent(n,) iff no= parent(n,) and T[(ny,n2)] = "ISA",

e ny = PartOfParent(nly) iff ny= parent(n;) and T[(nl,n2)] = "Part0f"

e ny= SynOf(ny) iff T[(n1,n2)] = "Syn0f"

e DESC(r,c)={s€(|Ve€ ENe€ P(node(c) — node(s)) NT(e) =1}

e SYNs(c) ={s e (|Vee EANec P(node(c) — node(s)) AN T(e) =”Syn0f”}
Informally, DESC(r,c) gives the set of all concepts in O obtained by retrieving recursively all the
labels of the children nodes related with the node of ¢ by following only the links of type r. Similarly,

SY Ns(c) gives the set of all synonyms of ¢ in O. We denote by P(n; —ns) the directed path between
two nodes nq and ns.

3 Motivation and Problem Statement

Data semantics, as defined in [22], is the meaning of data and the reflection of the real world. Since
designers perceive the real world differently, there exist more than a single way to represent the existing
objects and their relationships. The real world objects might have complex structures and dynamic
behaviors. Thus, capturing the semantics completely from the real world seems to be impossible
i.e. there does not exist any model which can define all the aspects of the real world objects. For

example, relational database systems overcome the limitations of the relation model by adding a set

www.manaraa.com

7.,

@ - —
~ _ —
—
—

P \\/: <Z /
\

Desktop @ Keybord

Non-
Electronic

@ Notebook
AN
\

——» ISA
— — — —» PartOf

Figure 1: Product Ontology

of integrity constraints to maintain data that is consistent and to provide support for semantic rules
such as cardinality, containment, and type hierarchies [18].

We believe that a new generation of DBMSs requires additional semantic supports for a flexible
and efficient data management. This includes facilities for data integration, query optimization and
meaningful query processing. The later problem is addressed in our paper. The basic idea, is to give
the DBMS the ability to deal with the queries both at the semantic as well as the syntactic level. In
fact, if a user attempts to retrieve information about objects from the database, the answer to his
query might not meet his expectations. This might be one to the following reasons:

First, there might be semantic ambiguities between the terms used in the query and the database
values that represent these objects (vocabulary problems). In fact, the user’s perception of real world
objects might not match exactly that of the database designer. Second, there might be different ways
to formulate the query using semantic equivalent terms. We define two sets of terms to be equivalent
if their relevant concepts and relationships in the ontology identify the same concept. There might
be several such sets. We will specify this definition in our future work. Therefore, when the user
formulate his query, he might use terms cover partially these semantics. Third, some results in the
answer might not be related to the same context associated with the query. The context must be
defined by the user.

Now, we give an example that can illustrate these reasons and our ideas throughout the paper:

We consider the ontology 'Product’ given in figure 1, denoted by O;. This ontology describes several
products. We assume that we have a simple relational database, denoted by DB, including two
relations called "Article’ and ’Component’. The relation Article contains a set of items described by

www.manaraa.com

the attributes 'name’; 'model’ and ’price’. The relation component contains the parts belonging to
each item. The relational schema of DB is the following:

ARTICLE(AID, Name, Model, Price) COMPONENT (S-Part-ID, M-Part-ID)
ATID: Article identifier M-Part-ID: Main part identifier

Name: Name of the article S-Part-ID: Second part identifier

Model: Model of the article Foreign-Key(M-Part-ID) TO ARTICLE
Price: Price of the article Foreign-Key(S-Part-ID) TO ARTICLE
PrimaryKey(AID) Primary-Key(S-Part-1D)

Suppose, at present, that DBy contains the following instances as shown in the tables 1 and 2.

S-Part-ID | M-Part-ID
123 129
123 135
A-ID | Name Model Price };Z }gg
123 Computer | IBM 3000 $ 124 135
124 | IntelPc Toshiba | 5000 $ 124 136
125 | Notebook | Dell 4000 $ 125 135
127 | PC Compaq | 2500 $ 127 129
128 | Product HP 3000 $ 127 135
129 | Monitor Elsa 1000 $ 127 136
135 | Keyboard | ITT 80 $ 128 129
136 | Desktop | IBM 1000 $ 128 135
140 | MacPc Mac 2000 $ 128 136
141 Calculator | Siemens | 1500 $ 140 129
. . 140 135
Table 1: Article relation 140 136
141 135

Table 2: Component relation

When a user want to retrieve information about computers from D B;, he may submit a query that
looks like
Q1: SELECT * FROM article WHERE name =’computer’.
In this query, the user intention concerns the object ”computer”. However, according to the ontology
O;, the concept ”computer” is synonymous with the concepts ”data processor” and ”calculator”.
Furthermore, it has a broader meaning than the specialized concepts "notebook” and ”palmtop”.
Intuitively, the ISA-relationship implies a strong similarity between the general concept and its sub-
concepts. Since the ISA-relationship is transitive, the same argument can be applied to further
specialization i.e. "MacPC” and ”IntelPC” . The database designer might use any of the specialized
terms to specify the article ”computer”. If the user does not know these semantics in advance, he
will not obtain all the relevant instances from DB;. Thus, a meaningful processing of @J; has to
transform the user query by adding these terms to the query condition. As consequence, the result
of the transformed query might be greater than the result of the previous query and satisfy more of
the user’s needs. Note that without a semantic support, like the ontology, it is hard for the DBMS
query processor to solve such vocabulary ambiguities. In this case, the ontology provides additional
meanings for the database values related to a certain attribute name. These meanings are expressed
through the relationships between the corresponding concepts. Now, suppose the user wants to get
information about the article ”PC”. His query may look like
Q2: SELECT * FROM article WHERE name = ’PC’.

In this query, the user’s intention concerns the object "PC”. According to the ontology O the concept
"PC” is specialized into the concepts "MacPC” and ”IntelPC”. In addition, following the PartOf-
links, a ”PC” has three parts: a ”"desktop” , a "monitor” and ” a "keyboard”. If we assume, that

www.manaraa.com

all the PC-objects in the database must be composed exactly of these parts and that there do not
exist any other objects composed of these, then we can find another way to characterize the same
object "PC” by means of its components. With regard to the definition mentioned earlier, we can
say that the terms ”desktop”, "monitor” and ”keyboard” can build a new query condition which is
semantically equivalent to the condition of (Jo. Therefore, it is not surprising that the tuples 123 and
128 with attribute names ”computer” and ”product” meet fully the intention of the user. When a
user poses a (J2-query to the database DB, these tuples will certainly be missed. The DBMS query
processor has to extend the user query considering these semantics in addition to those suggested for
the previous query ;. Note that in this case the number of tuples in the answer result will also
increase. These examples clearly show which problems we are intended to solve:

"How can database queries be transformed using an ontology?”
"How can these transformations be validated?”
"How should the ontology look with respect to the database?”

Formally, the problem can be stated as follows:
Given a database DB, an ontology O and a user query @, how to find a rewriting @' of () by using
O, such that @' returns to the user possibly more or fewer meaningful results than Q.

4 Ontology based Query Processing

We address the problem above and choose the Domain relational calculus (DRC) formalism to repre-
sent user queries of the form @ = {s|¢(s)}, where s is a tuple variable and (s) is a formula built
from atoms and collection of operators to be defined shortly:

The atoms of formulas 1 (s) are of three types: u € R, v § w, and u 0 t, where R is a relation name
and u, v and w are tuple variables, and ¢ is a constant. is an arithmetic comparison operator (=, <
and so on). An occurrence of a variable in a formula can be bound or free. Formulas and variables in
@ can be also defined recursively using the logic operators ”A” and ”V (see [23])

Our approach consists of three phases: preprocessing, execution and post-processing phase.

In the preprocessing phase, we transform a user query into another one based on new terms extracted
from the ontology associated with this database. To this end, a set of transformation rules and of
mapping functions must exist. The mapping functions have to map database types such as relation
names, attribute names and data values to the concepts in the ontology. The transformation rules
must contribute to:

e Expand the queries by changing their select condition « using terms synonymous with ¢ and the
terms specifying its concept. To achieve this purpose, the ontology must have the capabilities
of reasoning over the synonym and hyponym relations, and

e Substitute the query conditions with other conditions that are semantically equivalent. Building
such rules with respect to the database and the ontology is not an easy task.

However, the rules should not be developed according to ideal alone but they must lead to results
closer to the user expectations. In addition, we need a semantic model that can reflect semantics of
the transformations made at the syntax level. This might assert the validity of these rules. In the
next section we propose this model. In the execution phase, the transformed query is processed using
available query strategies of the system and the result is checked. If the result is empty, we perform
the third phase. In the post-processing phase, we attempt to generate a more generalized answer to
the query. That is, for each mapped attribute in the query condition three steps are performed:

(1) We substitute its value with the term of the corresponding parent concept by ascension of the
ontology relations one level

(2) We execute the query again. If the answer set is still empty then we continue the substitution
process in step 1 using much higher level concepts.

www.manaraa.com

(3) We repeat step 2 until we find tuples in the answer set or no substitution is possible i.e. we
achieve the root concept node.

5 Semantic Model

Given an ontology O = {G(V,E),(,R,N,T} and a database DB. Let U be a set of the attributes
Ay, ..., A, where each attribute domain, dom(A4;), is considered finite. The database schema is defined
as a set of relation schema R; ,...,R,, where the attributes of each relation schema belong to U. The
set of attributes that are primary keys is denoted by PRIMKEY (U). Let also U(R;) be the set of
attributes of U that define the schema of R;. In addition, let M; be defined as the function that
represents the mapping of the relation names into the concepts in O, called relation-concepts; let
M, be the function that represents the mapping of attribute names into the concepts in O, called
attribute-concepts, and let M3 be the function that represents the mapping of the attribute values into
concepts in O, called value-concepts.

We propose a semantic model that enables us to validate the syntactic transformations of the database
queries proposed earlier. This model is defined as a particular ontology, denoted O* ,which is an
extension of the original ontology O. Additional concepts and relationships are introduced as specified
below. Note that there is no single consensual methodology for the ontology design [15]. Thus, we
would not restrict our ontology development to particular guidelines for the building of the ontology.
In fact, the purpose of this work is not to discuss how to develop or integrate an ontology. These
issues alone are challenging problems for the researcher. For more interests to these topics, readers
are recommended to refer to [6, 24].

Additional Concepts

For each relation R of the database new concepts are created to represent the relation name, its
attributes (expect the primary key attribute) and their domain attribute values unless such concepts
already exist in O. In this case, we adopt the following naming conventions for the concepts:

(1) No single term can name two different concepts.

(2) The name of an attribute-concept is prefixed by the name of its relation concept.

These conventions are defined not only to make the extension of the ontology easier, but also to help
avoid ambiguities in distinguishing concepts. We define the Id-concepts as the set, of value-concepts
that represent the values of the primary-key attributes. We denote by I D the set of nodes labeled by
Id-concepts. We denote also the new set of relation-concepts, attribute-concepts, and value-concepts
as Crn, C4 and Cy respectively.

Additional Relationships

Because new concepts might be created as described above, one needs to link them with the existing
concepts and/or with each other. To this end, additional binary relationships holding new semantics
are introduced. The types of these relationships are defined as:

e ValueOf:
This is the type of the relationship that relates each value-concept to the attribute-concept.
Formally,VA; € U\PRIMKEY (U),Yw € dom(Ai), T(node(Ms(w)), node(M5(A;))) = ”ValueOf”.
Note that the ValueOf-relationship has nothing to do with Id-concepts.

e HasA:

This is the type of the relationship between the relation-concepts and the attribute-concepts.
Formally, V A; € R;, R; € DB, T(node(M:(R;)),node(M(A;))) = "HasA".

www.manaraa.com

e InstanceOf:

This is the type of the relationship that relates the Id-concepts to their corresponding relation-
concepts so that VA; € PRIMKEY (U), A; € R; and id € dom(A;),
T (node(Mj(id)), node(M, (R;))= "InstanceOf" .

e TupleVal:

TupleValis defined as the type of relationship relating the concepts associated with the attribute
values of each tuple. This relationship is represented in the graph of O* as a directed arc going
out from the Id-concept node to other value-concept nodes associated to each attribute value
of a given tuple.

Formally, given a tuple u € R;, p: U — dom(U),V A; € U(R;), and ID € PRIMKEY (R;),
T (node(M3(u(ID)), node(Ms(u(A;))) = "TupleVal™.

Summary
O* is defined as O* = {G*(V, E),(*,®*, N, T}, where (* = (U Cry UC4 UCy,
and ®* = RU {"ValueOf”,”HasA”,” Instance0f”,” TupleVal”}

Figure 2 describes the semantic model for the product ontology. For the sake of a good visibility, we
reduce the graph to some nodes and edges.

Article

</\/\/ // , /
—~ ~ .
ard

Sav

Figure 2: A portion of the Semantic Model for Product Ontology

— — —» Partof
~—_p ValueOf
A [nstanceOf

\2/‘/—. TupleVval

www.manharaa.com

Definitions

For the ease of semantic reasoning on the concepts in the ontology graph of O*, we introduce the
graph operator: SelectRel . This operator will be used in the following sections.

SelectRel Operator:

This operator returns all edge types of the path between two value-concept nodes in G* that are
connected with two other id-nodes via edges of type "TupleVal".

Semantically, if two id-nodes are adjacent (there is a common edge of type "TupleVal") then the
semantic relationship between the represented concepts can be deduced from the result of the SelectRel
operation on these nodes. We assume that the Part0f-relationship semantically dominates the "ISA"
one. This means that, if a path between two nodes consists of edges of types "ISA" and "Part0f" then
the semantic relationship between the concepts, which label these nodes, is of type "Part0f". For
example, if the semantic relationship between two database instances is of part-whole type then there
exist in O* a "Part0f"-relationship between two value-concepts, which are related to id-concepts of
the tuple- identifier. In other word, the part-whole semantic between two database tuples will be
reflected in the semantic model through relevant concept-values. Thus, if we want to know which
semantics relate the tuple 123 and the tuple 123, we have to operate SelectRel on their corresponding
id-nodes. As a result, we get two types of relations "ISA" and "Part0f". Due to the assumption
above, we conclude that the object identified by 129 is part of that object identified by 123.

Formally, let idy, idy € ID(G*)

SelectRel(G*,idy,id2)= {R; € R|R;, = T(z,y) A 3n1,na € V(G*) A T(id1,n1) = "TupleVal”
AT (id2,m9) = "TupleVal” A [(z,y) € P(n1 —n2)V (z,y) € P(ISAChild(n,) — ISAChild(ns))]}.
We denote by |SelectRelpariof(G*,idy,id2)| the number of "Part0f"-labels returned by the Slect Rel
operator.

5.1 Logical Interpretation of the Model

In this section, we want to express the semantic model in a logical framework using the First Order
Language (FOL) [5]. The later representation will be useful for formulating the criteria related to our
semantic model. From a logical point of view, O* is a theory I', which consists of an Interpretation I
and a set of well formed formulas. I is defined by the set of individuals A, called universe of discourse,

and an interpretation function .

Formally, I':

I= (Aa'I)
A=

ISA" = {(a,b) € A?|T(node(a),node(b)) = "ISA”}

SYN! = {(a,b) € A%|T(node(a),node(b)) = ”Syn0£”}

PARTOF! = {(a,b) € A?|T (node(a),node(b)) = "Part0f”}

HASA" = {(a,b) € A?|T (node(a),node(b)) = "HasA”}

VALUEOF" = {(a,b) € A*|T(node(a),node(b)) = "ValueOf”}

INSTANCEOF! = {(a,b) € A?|T(node(a),node(b)) = "Instance0f”}

TUPLEVAL" = {(a,b) € A% T(node(a),node(b)) = "TupleVal”}

WHOLE' = {a € AVbibsc. ISA(a,br) A ISA(a, bs) A PARTOF(b1,¢) — PARTOF (b2, ¢)}
HASPART! = {a € A|Vb3p. ISA(a,b) - PARTOF(b,p)}

Key! = {a € A|3b.T(node(a),node(b)) = " instance0f”"}

V. ISA(x, z)

Vo. SYN(z,)

Vz. PARTOF (z,)

Veyz. ISA(z,y) NISA(x,2) — [SA(x, 2)

10

www.manaraa.com

Vr.y SYN(x,y) + SYN(y,z)

Veyz. SYN(z,y) NSYN(z,z) - SYN(z,2)

Vayz. SYN(x,y) NSYN(x,z) = SYN(x,z)

Vayz. PARTOF(x,y) NPARTOF(x,z) - PARTOF(x, z)

Vey 2. TUPLEV AL(z,y) - INSTANCEOF (z,2)

Vey 3 2. VALUEOF (z,y) - HASA(z,y)

Vayz. VALUEOF (y,z) NISA(x,y) - VALUEOF(x, z)

Vayz. VALUEOF (y,z) ASYN(z,y) - VALUEOF (z,z)

Vzyz. 3w. INSTANCEOF (z,y) N\HASA(y,z) » TUPLEV AL(z,w) N\VALUEOF (w, z)
Veyz. ISA(z,y) ANSYN(y, z) « ISA(x, 2)

Vayz. ISA(z,z) N SYN(z,y) < ISA(y, 2)

Vryz. PARTOF (z,y) NSYN(x,z) + PARTOF(z,y)

Veyz. PARTOF (z,y) NSYN(y,z) < PARTOF(x, z)

Voyz. PARTOF (x,y) NISA(y,z) < PARTOF(x, z)

Vaeyz. WHOLE(x) N ISA(z,y) NPARTOF (y, z) < PARTOF(x, z)

Vey COMMONPART (z,y) <> Vz122SA(x, 21)NISA(2, 20) A\WHOLE (21)AN\W HOLE(29)N PARTOF (21, y)\
PARTOF (z2,y)

5.2 Correctness and Completeness Criteria

We define two criteria, correctness and completeness, for the validation of the transformation rules.
The basic idea underlying these criteria is that, if we reflect any syntax transformation of the query
on the semantic level it must be correct i.e. it will not violate the semantic model. Symmetrically,
the semantic model is defined as complete if the mapping of concepts, which represent the result of
the transformed query, are reflected by the database i.e. the corresponding values in the database are
stored consistently.

To define formally these criteria, we need the following preliminary definitions:

Definition 1: An attribute A of U is said to be covered by O, if each value of its domain is represented
by a concept in O.
Formally, V= € dom(A),3c e (| M3(z) =¢

Definition 2: A relation R is said to be partially covered by O, if there exist an attribute A of R
which is covered by O.

Definition 3: Two id-concepts id; and idy are said to be semantically dependent if and only if
SelectRel(G*, node(idy), node(idy)) # O

Correctness Criterion

Formally, An extended ontology O* is said to be a correct model for a relation R if and only if:
Vidy,idy € dom(ID) , ID € PRIMKEY (R), and ic; = M3(idy) and ico = M3(ids)

(1) IF T (node(icy),node(icy)) = ?TupleVal”
THEN ic; and icy are semantically dependent,

and

(2) IF |SelectRel pariof(G*, node(icy), node(ics))| # 0
THEN |SelectRelparto f(G*,node(ict), node(ics))| =1

The intuition behind the first condition, is that if two database tuples are related to each other, then
there exist in O* at least one semantic relationship between the two value-concepts associated to
two attribute values of the tuples. For example, if we examine the semantic model of the product
ontology (see figure 2), then we deduce that the relation between the tuples 123 and 129 (see relation

11

www.manaraa.com

component) is reflected by the semantic relationship of the concepts ”computer” and ”monitor”. That
is, the object 129 is part of the object 123.

The intuition behind the second condition, is that only a PartOf-relation level is allowed for all the
database instances i.e. if item A is part of item B and item B is part of item C than the database
does not store explicitly the relation: Item A is part of item C.

Completeness Criterion

The extended ontology O* is complete if and only if:

(1) Vidyayp. Key(idi) N\TUPLEV AL(id,a,)A\WHOLE(a,)NPARTOF (a,,p) = 3 ida Key(id2) A
TUPLEVAL(idl,idy) A TUPLEV AL(ids, p),

and

(2) Vidiayp Jidy Key(id,)A TUPLEV AL(id, a,) N HASPART (a,) \COMMONPART (a,,p) —
Key(idy) NTUPLEV AL(idy, idy) A TU PLEV AL(idy, p)

are satisfied.

Axiom (1) denotes that each decomposition of a concept in the ontology must reflect the same decom-
position for the associated values in the database instance. In this case, the decomposition is said to
be mandatory for the database instances. For example, each instance of the Database DB1 where the
article name is "PC” should have a ”desktop”, ”monitor” and ”keyboard” instance. In addition, the
condition asserts when the PartOf-relationship is transitive with respect to the ISA-relationship. A
concept, say B, is a part of a concept, say A, if B is a part of all the sub-concepts of A. For example,
the concept "monitor” is a part of the concept "PC” because it’s a part of both concepts ”MacPC”

and "IntelPC”, which are sub-concepts of "PC”.

Axiom (2) denotes that if all the sub-concepts of a concept, say A, have a common part concept, say
P, then each database instance reflecting A must be minimally related to an instance, which reflects
P. For example, suppose that the concept ”palmtop” does not exit in the ontology ” Product”. Thus,
for each tuple of the database where the article name is ”computer” must be related to another tuple
where the article name is "keyboard”.

Summary

Based on the criteria above a database instance is consistent with respect to an ontology O if

(1) O* is a correct model for the database, and

(2) O* is a complete model for the database.

5.3 Example of a Transformation Rule

Now, we present a possible transformation rule and illustrate its validation using our proposed semantic
model. This will help illustrating the basic ideas of our approach in this paper.

intuitively, this rule derive terms from the ontology, which are synonymous with terms used in the
query conditions and other terms that specialize them. The query example) in the section 3 is
related to this rule.

Formally, let D be the set of domain attributes of a database, to € D, and ¢q € O.

IF Q = {(’1‘1,1’1“7,) | (Tl,Tn) S R/\T,ef[)} and Mf;(f[)) = Cp

THEN Q = {(z1,...,2,) | (@1,...,2,) € RA [(x:0t0) V (2i0t:) V ...V (zi0t,,)]}

12

www.manaraa.com

where tp € hUL,1Sk<m= |[IhUl]|
Iy ={t € D | Ms(t) € DESC;54(co)}, and
Iy = {t € D | Ms(t) € SYNs(c), c € Io}

We note that this rule might increase the result set, say Sg, provided by (). This augmentation is not
arbitrary but it is proved by the semantic model O* associated with the database: According to O*,
the tuple identifier of Sg are represented by id-concepts, which are linked with value-concepts, and
the relation-concept through TupleVal and InstanceOf-relationship, respectively. Formally, this set
is given by the following:

Qpr ={z | W(z)}
— {2 | TUPLEV AL(z, Ay) A INSTANCEOF (z, Ry) — VALUEOF(Ay, Ax)}

where z is a variable and Ay, Ay, and Ry are constants. O* interprets the rule as the existence of
additional value-concepts, which are semantically related to those representing terms in the condition
of the query Q. We call the id-concepts, which are related to the later ones virtual tuple-concepts and
the semantic relationship between them Drived Tuple Val. Formally, this type of relationship can be
expressed by a predicate DRIVEDTUPLEV AL as follows:

W' (x) :Vz 32 DRIVEDTUPLEV AL(x,y) - TUPLEV AL(z,z) A [ISA(Av, 2) V SYN(Ay, 2)].
We denote by Qy 1, the set of virtual tuple-concepts and express it as follows:
Qvr ={z|32zDRIVEDTUPLEV AL(x, 2)}.

As a result, if we unify the sets Qg with Qyr, we get then a set of individuals from A, which
represents id-concepts of the result of the query Q. We denote this set by (.
Formally,

Q=QprUQyr
O = {z | 3 2 TUPLEVAL(z,2) A INSTANCEOF (2, Rx) — VALUEOF (2, Ax) A [ISA(Ay, 2)V
SYN(Av.2)]}

6 Conclusion and Outlook

Today, Database management systems face challenging problems in dealing with the huge amount of
data and the variety of its format. Thus, current database systems not only need additional supports
for manipulating data but also for understanding its meaning. Semantic knowledge in its various forms
become a necessary tool for enhancing the usefulness and flexibility of data management, especially in
integrating data from multiple sources and in optimizing the queries. In fact, this makes the database
aware of the semantics of its stored values and thus provides better ways to answer a query request.
Conventional database querying does not always provide answers to users, which fully meet their
expectations. One of the reasons, is that the query is treated at only the syntactical level.

In this paper, we have presented an approach for the query processing that processes the query
at both the syntactical and the semantical level. Our approach allows to generate answers, which
contain enough informative and meaningful results for the user. We use the ontology as a semantic
tool for processing data in a single database management system. We have showed how can we capture
semantics between database objects and use them for reformulating the user queries. We have outlined
the basic features of the rules that allow these reformulations. Then we presented a semantic model
and the basic criteria to validate any transformations made at the syntactical level.

Our approach can be appropriate for the databases where some attributes are enumerated from a list
of terms. For example, in product databases, the product items are described according to a collection
of standard terms [19].

Currently, we are developing a set of transformation rules for use in relational database systems.
Although these rules might not be ideal, we hope that they can bring more insight into the nature of

13

www.manaraa.com

query answers. We believe that using ontologies for managing data will provide meaningful information
to answer a database query.

In the future, we will investigate how to use ontologies to generate knowledge answers which are
compact and intuitive for the user and describe the characteristics of the query results.

14

www.manharaa.com

References

[1] K. Aberer and G. Fischer. Semantic query optimization for methods in object-oriented database
systems. In IEEE International Conference Data Engineering, pages 70 79, 1995.

[2] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web, a new form of web content that
is meaningful to computers will unleash a revolution of new possibilities. In Scientific American,
2001.

[3] U. Chakravarthy, J. Grant, and J. Minker. Logic-based approach to semantic query optimization.
In ACM Transactions on DatabaseSystems, pages 162-207, 1990.

[4] B. Chandrasekaran, J.R. Josephson, and V.R. Benjamins. What are ontologies, and why do we
need them? In IEEE Intelligent Systems, pages 20 26, 1999.

[5] E. Franconi. Description logics. Course at the International Doctoral school of Technology and
Science at the Aalborg University, Denmark, 2002.

[6] A. Gomez-Perez, M. Fernandez-Lpez, and O. Corcho. Ontological Engineering. Springer Verlag,
London Ltd, 2003. To be published.

[7] J. Grant, J. Gryz, , J. Minker, and L. Raschid. Semantic query optimization for object databases.
ICDE, November 1997.

[8] T.R Gruber. A translation approach to portable ontology specifications. In Knowledge Acquisition
(5) No. 2, USA, pages 199-220, 1993.

[9] N. Guarino and P. Giaretta. Ontologies and knowledge bases: towards a terminological clarifica-
tion. In Knowledge Building Knowledge Sharing,ION Press, pages 25-32, 1995.

[10] J. W. Han, Y. Huang, N. Cercone, and Y. J. Fu. Intelligent query answering by knowledge
discovery techniques. In IEEE Trans, pages 373-390, 1996.

[11] AA. Kayed and R.M. Colomb. Extracting ontological concepts for tendering conceptual struc-
tures. Data and Knowledge Engineering, 41(1-4), 2001.

[12] L.V.S. Lakshmanan and R. Missaoui. On semantic query optimization in deductive databases.
In IEEFE Inter-national Conference on Data Engineering, pages 368 375, 1992.

[13] D.B. Lenat and R.V. Guha. Building Large Knowledge-Based Systems: Representation and
Inference in the CYC Project. Addison-Wesley, Reading, Massachusetts, 1990.

[14] L. Liu, M. Halper, J. Geller, and Y. Perl. Controlled vocabularies in OODBs: Modeling issues
and implementation. In istributed and Parallel Databases, pages 37 65, 1999.

[15] F. Lopez. Overview of methodologies for building ontologies. In the IJCAI-99 Workshop on On-
tologies and Problem-Solving Methods: Lessons Learned and Future Trends.Intelligent Systems,
pages 26—34, 2001.

[16] E. Mena, V. Kashyap, A. Sheth, and A. Illarramendi. OBSERVER: An approach for query
processing in global information systems based on interoperation across pre-existing ontologies.
Conference on Cooperative Information Systems, 41:14 25, 1996.

[17] N.F. Noy and C. D. Hafner. The state of the art in ontology design. AI Magazine, 3(18):53 74,
1997.

[18] C.W. Olofson. Addressing the semantic gap in databases: Lazy software and the associative
model of data. Bulletin), 2002.

[19] B. Omelayenko. Integrating vocabularies: Discovering and representing vocabulary maps. The
Semantic Web-ISWC 2002, First International Semantic Web Conference, Sardinia, Italy, pages
206-220, 2002.

15

www.manaraa.com

[20] N.W. Paton, R. Stevens, P. Baker, C.A. Goble, S. Bechhofer, and A. Brass. Query processing
in the TAMBIS bioinformatics source integration system. Statistical and Scientific Database
Management, pages 138 147, 1999.

[21] H.S. Pinto and J. P. Martins. A methodology for ontology integration. In the First International
Conference on Knowledge Capture (K-CAP), pages 368-375, 2001.

[22] A. Sheth. Data semantics: what, where and how. Technical Report Preprint CS-01-99, TR-CS-
95-003, LSDIS Lab, Dept. of CS, Univ. of GA, 1995.

[23] J.D. Ullman. Principles of Database and Knowledge-Base Systems. Computer Science Press,
1988.

[24] M: Uschold and M: Griininger. Ontologies: principles, methods, and applications. Knowledge
Engineering Review, 11(2):93 155, 1996.

16

www.manharaa.com

